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Generalized Quantum Mechanical Two-Centre Problems
II. The Case of Equal Centres
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For the one-electron Schrodinger equation among the solutions of which the Slater-Zener-type
functions can be found, it is shown, that it can be generalized to the two-centre case only in one way,
if one demands separability in prolate spheroidal coordinates, and if in addition to the Coulomb term
of the potential energy there shall be an additional function of the product r, - r, only. The generalized
problem with a potential energy of the form V(r)= —~Z,/r, — Z,/r, — Q(R)/r, ¥, is studied for the
case of two equal centres Z, =Z, =Z 20 with regard to the existence and number of bound states.
The results are extended as far as possible also to the case with unequal centres. For some examples
with equal centres wave functions and correlation diagrams have been computed exactly for the
lowest electronic states.

Es wird gezeigt, daB sich die Ein-Elektron-Schrddingergleichung, unter deren Lésungen die Slater-
Zener-Funktionen sind, nur auf eine Art auf den Zwei-Zentren-Fall verallgemeinern 1aBt, wenn
Separierbarkeit in elliptischen Koordinaten verlangt wird, und wenn zusétzlich zum Coulomb-
Anteil der potentiellen Energie ein Zusatzglied, das nur eine Funktion des Produkts 7, - r, ist, vor-
handen sein soll. Das verallgemeinerte Problem mit der potentiellen Energie der Form V(r)= —Z/r,
— Z,/ry —Q(R)/r, v, wird im Hinblick auf die Existenz und Anzahl gebundener Zusténde fiir den Fall
gleicher Zentren Z, =Z,=Z =0 untersucht. Die Ergebnisse werden soweit moglich auf den Fall
ungleicher Zentren erweitert. Fiir einige Beispiele mit gleichen Zentren wurden Wellenfunktionen und
Korrelationsdiagramme fiir die tiefsten elektronischen Zustinde exakt berechnet.

L’équation de Schrédinger mono-électronique qui comporte parmi ses solutions des fonctions
du type Slater-Zener, ne peut étre généralisée au cas 4 deux centres que d’une seule maniére en exigeant
la séparabilité en coordonnées sphéroidales allongées et en ajoutant au terme coulombien d’énergie
potentielle une fonction du produit r, 7, seulement. Le probléme généralisé avec une énergie potentielle
de la forme

Z, Z, QR

Vir)=—— - — — ——
ry ry ity

est étudié pour le cas de deux centres identiques Z, =Z,=Z = 0, en ce qui concerne l'existence et le
nombre d’états liés. Les résultats sont étendus autant que possible au cas avec centres différents.
Pour certains exemples & centres identiques on a calculé exactement les fonctions d’ondes et les
diagrammes de corrélation pour les états électroniques les plus bas.

1. Introduction

In Part I [1] it has been proposed to study the separable one-electron Schrd-
dinger equation:
A Z Z R

2 ry Ty ri¥s
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The bound state solutions of this equation, the generalized diatomic orbitals,
are to serve as a one-electron basis in applications to diatomic molecules®.
Functions of this kind represent a generalization of the Slater-Zener-type atomic
functions, since the eigenvalue equation for the “united centre” case R—0:
(-5 -2t L)y @
7 r
(with the limiting value Q, # 0 of Q(R) for R—0) can be specialized to become an
equation, among the solutions of which the Slater-Zener-type atomic functions
can be found.

From the literature it is well known that, for certain parameter values Z,, Z,
or Q in Eq. (1) and (2), the spectrum and the eigenfunctions behave rather extra-
ordinary in comparison with some standard problems in quantum mechanics e.g.
the H atom or the H molecule ion. For example no bound states exist in the
case of Z, = —Z,, Q=0 (finite dipole) in Eq. (1) if the dipole moment is below
a certain limit (cf. e.g. [2]). For the one-centre problem (2) with (Z, + Z,)=0
itis known, that for certain values of Q, > O the spectrum is not bounded from below
while for other values of Q, > 0 no discrete eigenvalues exist (cf. e.g. [3, 4]). These
special cases demand a careful examination of the differential Egs. (1) and (2)
before a calculation of the eigenvalues and eigenfunctions and before an application
to molecular problems. In this paper the two-centre cases with equal centres
Z,=Z7Z,=7 20 will be studied. The results however will be extended as far as
possible also to cases with different centres. In all cases Q does not depend on
the electronic coordinates, however it can be a function of the distance R of the
two centres. The results for the united-centre case (2) can be found in the literature
or may be derived easily for some special cases [5, 1], and will be only reported
here together with the results for the two-centre case and the case R—oo [1]
in Table 1 below.

2. Extension of Slater-Zener-Type Functions to the Two-Centre Case

The potentials of the class of separable problems with cylinder symmetry
are of the general form:

Vir)= X(w+Y(v) (Xand Y arbitrary functions)

u? —v? u=(ry+r3)/R, v=(r; —1,)/R
For gaining a set of two-centre functions which represent a generalization of
Slater-Zener-type functions it is not possible, as it might seem for a moment,
to start from a one-electron Schrédinger equation:

3

—g——~———2——r—2>1=m. @)

! Potentials of this kind with an additional term V,(r)=(ap®- bv?)/r,r, have been proposed
as model potentials in one-electron theories for many-electron molecules [18, 19]. These potentials
will not been treated here, since there are enough non-linear variational parameters contained in the
present basis which shall be used e.g. in CI calculations. However one may show easily that the results
about the discrete spectrum in Chapter ¢) below are not affected at all by an additional
term [a(p® — 1)+ a}/r, r,. V; may be reduced to this form without loss of generality [19].
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This problem has no potential of the separable form (3). The whole class of separable
problems with potentials which can be written as a sum of two terms which are
functions of r; and r, respectively:

Vs(r)=g,(ry)+g,(ry) (g9, and g, arbitrary functions) &)

has been given by Coulson and Joseph [6], and consists essentially of such
potentials which are a sum of Coulomb terms.
If one goes over to the limit R—0 in the way described in [1], the potential
energy of Eq. (3) tends to:
. R*X(2r/R)
R = O = —_—
VR=0= i =
under the assumption that Y(v) depends on the parameter R in such a way that
it will vanish in the limit case so that V(R =0) will be a pure radial potential. If
one demands that V(R =0) should be of the form:
Z,+Z
YR=0)= — 2222 _ _QTO
¥ ¥
the form of X () is no longer arbitrary, while ¥(v) can still be chosen in an arbitrary
way in the corresponding two-centre case. An especially simple form of V(r)
is then

V(r)=—£——z—2~— ¢

1 ry rery

apart from the arbitrary Y(v}-part. However this potential is the only case of a
potential with cylinder symmetry of the general form:

Vel = 2~ L2 gy ry) ©
P p)

for which the one-electron Schrédinger equation is separable in prolate spheroidal

coordinates. This can be proved in the following way: separability is given if and

only if for all values of ; and r, Eq. (3) holds for the potential V{¢). Using Eq. (6),

Eq. (3) can be written as:

—Zyvy =2yt +1 1y glry - 1y) _ X(w+YW)
ity Fi-¥y .

Since the terms with Z, and Z, can be written as a sum of a function of y and a
function of v respectively one has:
p-9()=X(W+Y¥) ™
with
p=ri-1y; (u=ri+ry; v=ri—1y; R=1).

By differentiation of Eq. (7) after r, one gets:

d9®) . _ dX () N d¥()

8
dp 2T du d (82)

r,9(p) +p
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and by differentiation of Eq. (7) after r,:

d X dy
rig(p)+p Z(;) r= d;(tﬂ) - d‘()V)-

Addition of (8a) and (8b) and subtraction of (8a) and (8b) respectively yields:
dg(p) _ 2 dX(p)

(8b)

+ = , 9a)
9(p)+p dp L du (
dgp) _ 2 d¥()
— = — 9b
gp)+p dp Y dv Ob)
From these equations it follows:
2dX(w) 2 dY(v)' (10)

w dp v dv

Eq. (10) is true for all values of u and v only if both sides of it are constants C’:
2 dX(

=C, (11a)
poodp
_24Y0) o (11b)
v dv
Integration leads to:
Xw= Cu*+Dy, (12a)
Y(»)=—Cv?> +D,. (12b)
If these functions are introduced into Eq. (7) one obtains the function g:
D, +D
9= 57 +C, (13)
glry 1) = +C. (14)
Wy
Therefore the function:
Q(R)
or) = 15
glry-ra)= - (15)

leads, up to an additive constant, to the only potential of the general form (6)
for which the Schrédinger equation is separable in prolate spheroidal coordinates.
(The occurring functions are supposed to be differentiable.) The lines of constant
potential of the additional potential (15) alone are given by lemniscates.

3. The Discrete Spectrum of the Two-Centre Problem

The following theorem about the existence and number of bound state solutions
of the Schrodinger Eq. (1) shall be proved:

Theorem. a) If R(Z, +Z,)>0, Eq. (1) has (independent of the value of Q)
infinitely many discrete eigenvalues bounded from below.
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b) If Z,=Z,=0and 2Q — I(I + 1) £ 1/4 then there are no discrete eigenvalues.

For Z,=7,=0 and 2Q —l(I+ 1)> 1/4 there are infinitely many eigenvalues
of Eq. (1) bounded from below.

¢) If R(ZZ,+Z,)=0 (and Q =0) and if

R(Z,+Z,)+20+A4,,=51/4

there are no eigenvalues of Eq. (1).
If R(Zy +Z,) <0 (and Q2 0) and if

R(Z,+Z)+20+4,,>1/4

there are at most a finite number of eigenvalues of Eq. (1).

Al is the gratest value on one A,(p*)-curve in the range p* =0 (see below).
Those values of the separation constants, for which there are eigenvalues of Eq. (1),
may be determined numerically (see Section c) below).

d) If Z, £0, Z, =0 and simultanously Q <0, no bound states exist since there
are no attracting centres (trivial case).

Proof. The first results about the discrete spectrum of the partial differential
operator of Eq. (1) can be obtained at once with the general theorems of Kato [7, 8].
The formal differential operator of Eq. (1) determines uniquely a self-adjoint
operator with a certain domain in the Hilbert space of square integrable functions
over the three-dimensional Euclidian space. This follows from the fact that the
potential energy is locally square integrable and that it remains bounded for
|¥|— oo for it has no stronger singularity in any space point than the potential 1/r.

From the same reasons it follows that the spectrum of the operator of Eq. (1)
is bounded from below. The continuous spectrum covers the nonnegative real axis,
since V(r)—0 for |r|— co. The spectrum on the negative real axis contains (if any)
only isolated eigenvalues of finite multiplicity. It is clear that the Schrddinger
Eqg. (1) has no negative energy eigenvalues, if there are no attractive centres, that
means if Z, £0, Z, £0 and simultanously Q <0 (case d)). So furtheron only those
cases have to be examined with regard to bound states for which there is at least
one attractive centre.

Further results about the spectrum may be obtained from the separable partial
differential equation in prolate spheroidal coordinates which is derived from (1).
With the product function:

im¢

x=P(u,v) —El/z—_n— (m integer) (16)

one obtains:

2 2 17
(I R@Z 4+ Zou RE - Zyv—20®)+ 2 )b 1D
uw -1 1—vy

P(/") V)= “PZP(II, V)
with p*= —1/2 ER? (p>0).
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It is now possible to apply the separation theory of Cordes [9] to the selfadjoint
operator of Eq. (17) [5]. According to the theory of Cordes the eigenvalues of
Eq. (17) are those values — p? and only those for which there exists at least one value
of A', so that the equations:

d d 2
fa = 1) = 0708 = 1)+ R+ Zi+ 20 + 4 = L UG =0, (1)

2

m
fr = =P =)= REG = Zy— A= 1
simultaneously have solutions which have to fulfil certain requirements of
square integrability and of eventual additional boundary conditions [5].

Those parameter pairs (p?, 4,) of the v-Eq. (19) for which there are solutions
which satisfy the boundary conditions are represented by a set of curves in the
real (p?, A')-plane. For the derivative dA’/d(p?) of all the functions A,(p?) it
can be shown [9] that:

} VW) =0 (19)

7
v

d(p?
A survey over the solutions of the u-Eq. (18) and the corresponding parameter
pairs (p*, 4,) can be obtained with the following eigenvalue problem ([9], I1, p. 383):
1
(u? — 1) cosO +sinf

~-1< <0 (0=p?’<+ o). (20

d d g
{- g0+ (ARG 2204021 )} 1

f=af, 0<f< l;-
If the problem has eigenvalues o and eigenfunctions f then the u-Eq. (18) posesses
the required solutions U(u) belonging to the parameter pairs (p3 — a cos0,
Ay +osinf). For a further simplification one can choose 8 =n/4 and therefore
cosf =sinf. According to Friedrichs [10] one obtains the deepest point o, of the
non-discrete part of the spectrum of the operator of Eq. (21):

ps
= . 22
0= os0 (22)
The existence and the number of discrete eigenvalues of Eq. (21) may be recognized
from the number of zeros of the solutions of the corresponding differential equation
for the deepest point a, of the non-discrete spectrum:

2

d d
{Tﬂ-(,f—n?”— +(— ?ﬂ—T +R(Zl+Z2)u+(2Q+A’o+p%)>}f:0. 23)

The proofcan be completed in the following way now : the position of the parameter
pairs (p?, 4)) relative to the straight line 4’ = (1/4'—2Q) — p? in the (p?, A')-plane
is decisive for the existence of acceptable solutions of the u-Eq. (18), as will be shown
below. On the other hand the position of the curves A,(p?) (for which there are

4 Theoret. chim. Acta (Berl.) Vol. 21
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solutions of the v-Eq. (19)) relative to this line can be recognized from the value
A}, (p*=0) and the range of possible values of the gradient (20) of A/(p?). Those
regions of parameter values (p?, A’) for which both Egs. (18) and (19) have solu-
tions, can then be determined from the relative position of the regions of acceptable
parameter values A4, (p?) and A4,(p?).

a) Case with R(Z; +Z,)>0

If R(Z; +Z,)>0 the solutions of the differential Eq. (23) always have (in-
dependent of the values of Q, 4, and pj) infinitely many zeros (according to a
theorem of Kneser [11]). Therefore there is an infinite number of discrete eigen-
values a below a, [12]. It follows that there is an infinite number of parameter
pairs (p?, A,) on curves A/, (p?). Those pairs (p?, A’) for which the Egs. (18) and (19)
have simultaneous solutions can then be determined in the same way as for the
similar equations in the case of the Hj molecule ion (cf. e.g. [1]).

b) Case with Z,=7Z,=0

In the case that there are no Coulomb centres (or in the case of equal opposite
charges R(Z, + Z,)=0) Eq. (23) goes over into the differential equation of the
associated Légendre functions. Its solutions P)*(x) and Q(u) have

for 20+ Aj +p0 <1/4 no zerosin (1, o),
for 20+ Ay +p3>1/4 infinitely many zeros in (1, o)

(cf. e.g. [13]). From the number of zeros now again follows the number of eigen-
values  below the limit a, of the non-discrete part of the spectrum [12]:

20+ Ay +p2 <1/4: no eigenvalues below o, (24)
2Q + Ay +pd>1/4: infinitely many eigenvalues below o. (25)

Corresponding to the number of eigenvalues below «, there are parameter pairs
(p% — o cosl, Ay + o sinf, with a < p3/cosf) for which there are solutions of the
w-Eq. (18). If the greatest value of A and the lowest value of pj on one A4,(p?)-
curve in the range p? =0 are inserted into the inequalities (24) and (25), one can
decide if, on the special 4, (p?)-curve (m given, for a certain ! =m, m+ 1,...) under
consideration there are any possible parameter pairs (p?, 4’) for both differential
Egs. (18) and (19). Accordingly there will be eigenvalues —p? of the partial dif-
ferential Eq. (17) (cf. Fig. 1 for the following discussion).

In the case Z, =Z, =0 the above mentioned extremal pair on one A,(p?)-
curve is (0, — (I + 1)) [14]. It follows then: if one has

—~ll+1H)=<1/4-2Q (26)

there are no parameter pairs (p?, A') corresponding to these values of Q and I,
and thus there are no energy eigenvalues E, which are determined by p2.
If one has
=l(l+1)>1/4-2Q 27
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(1/4-2Q)

Fig. 1. The qualitative behaviour of the functions 4,,,(p?)

there are infinitely many parameter pairs (p?, 4') for these values of Q and I, which
lie below the straight line 4’(p*)= —I(I +1). The whole curve A,(p?) belonging
to m and [ lies above the straight line 4'(p?) = (1/4 — 2Q) — p? with the gradient —1,
since A;(p?) has a gradient with values between — 1 and O (see Eq. (20)). Therefore
one always has A}, + p*> > 1/4 — 2Q. The parameter pairs (p?, A) above that straight
line for which the y- and v-Eqgs. (18) and (19) have simultaneous solutions can be
determined in a similar way as in the case of the H; molecule ion (cf. e.g. [1]).

c¢) Case with R(Z, +Z,)<£0 and Q=0

For the remaining cases with R(Z, +Z,)<0 and Q=0 one recognizes
from the special case with R(Z, + Z,)=0 of Eq. (23), that the solutions of the
corresponding equation with

R(Z, +Z)+2Q+ A, +pi<1/4 (28)
also have no zeros in (1, ), since this equation is a Sturm minorant to Eq. (23)
for this case [15]. If

R(Z,+Z,)+20 + Ay +p3>1/4 (29

the solutions of (23) have at most a finite number of zeros since this behaviour
can be shown for the ends of the interval (1, co). At g= oo this follows from a

4%
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Fig. 2. The potential energy for the case V= —R/r;r, in comparison with the potential energy

VHE = —1/r, — 1/r, and the corresponding electron densities along the z-axis for the two lowest states
0,15 and o, 1s (R =2[a,])

Footnotes to Table {

2 In the trivial case Q@ <0, no discrete eigenvalues exist.

b This condition has been introduced only for R—c0: if (Z; + Q) £0, then there are no eigen-
values for @ = R C in the limit case R =co.

¢ If(Z,+Z,+ Q)< 0, no discrete eigenvalues exist.

4 CE [5].

¢ E, is given e.g. in Eq. (10) of [1].

fCL[1]
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theorem of Kneser [11]; at y=1 this is true since this point is a regular singular
point of the differential equation [16]. Thus it follows in the same way as above
that there are at most a finite number of energy eigenvalues below E=0 for a
certain value of R(Z, +Z,) and Q. In order to determine these values one has
(as above) to insert into Eq. (28) and (29) the highest value of A, and the lowest
value of p? on one 4,(p?)-curve in the region p? = 0. A simple quantitative result
as in the case of equal centres Z, = Z, = 0 cannot be presented here, since 4,(p?)
of the v-Eq. (19) does not accept integral values in the limit p? =0. However the
region consisting of pairs (R(Z; + Z,), Q) with R(Z, + Z,) <0, and Q = 0 for which
bound states still exist can be determined numerically within the scope of the
methods described in Part I [1] in the following way. Starting with the initial
approximation, that the negative centre has been brought to infinity, the eigenvalues
are calculated stepwise for all distances until the limiting value p? =0 has been
reached.

The results for the two-centre cases and for the limit cases R=0 and R=c0
are summarized in Table 1 for Q(R)= RC and Q(R)= C, where C is a constant.

4. Results for Special Cases of the Generalized Two-Centre Problem

a) Results for the Potential Energy Vg = —R/ryr,
The potential energy

R
Vo, = — 30
has the same value as the potential energy of the H} molecule ion:
1 1 r T,
e e e RTT2 31
Vi o 7 G2y

for all those points on the line through the two centres, for which onehasr, +7, =R
(see Fig. 2). In all other points of space where r, +r, > R the potential energy
Vrisgreater than V. For the ground state 6, 1s Fig. 2 shows that the electron density
¥ of the problem with Vy is greater than the electron density y7; of the problem
with Vy; in the region |z| < 1. The opposite is true for |z[ > 1. For the first excited
states o,1s yz is smaller than yj;. in roughly the region |z| < 3. Since the increase
of the electron density between the centres is decisive for a chemical bond (see
e.g. [17]) one may conclude here that the potential energy V leads to a strengthen-
ing of the bond in comparison to the Hj potential if it is applied in a molecule
model.

According to the results of Chapter 3 no bound states exist if in the case of
1=0 the distance R is not greater than the critical value R,;, = 0.125, while in the
case [ =1 the critical value is Ry,; = 1.125. Assuming a value of R (=1.5) near the
critical one for I=1 Fig. 3 shows that the electron density is more distributed
over the whole space in comparison to HJ. For I =0 where this value of R is far
from the critical value 0.125 no such behaviour occurs.
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Fig. 3a and b. Contour diagram of the wavefunction for the lowest excited state o, 1s for a) the problem

with the potential energy Vg = — R/r,7,; b) the hydrogen molecular ion H} (R = 1.5 [4,])

For this potential the electronic energy E = E(R) for the ground state o 1s
and the first excited state ¢, 1s has been computed (Fig. 4). The calculations show
that for R — R,;, the energy E(R) tends to zero. For comparison the corresponding

energy curves of Hf have been inserted into Fig. 4 too.
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E+ ] 2 5 —= Rlg,) y
lefad t L

-0.94

-027

[

Fig. 4. The energy E = E(R) for the states g, s and o, 1s for the problem with the potential Vg = —R/r; 7,
(For comparison E(R) of HZ for these states is given too)

b) Results for the Potential Energy V; = —1/r,1,

The value of Q(R)=const= 1 in the potential energy:
V= (32)
rr,
is below the critical value Q,,;, = 1.125 for | = 1. However, for [ =0 the value of p
which does not depend on R here can be calculated by the methods of Part I [1].

E(R) becomes then the very simple function:

2p? const
ER=-Fr ==& 9
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which indeed shows the predicted behaviour for the limiting cases: for R—0
the energy spectrumis not bounded from below ([ 5]; see Table 1) whilefor R—c0 V;
disappears and with it the discrete energy spectrum.

¢) Results for the Potentials of a) and b) with Additional Coulomb Centres

For the potential energy from a) with additional Coulomb centres:
1 1 1
Vigz=————-—
rq ra rr
the first excited state o, 1s (I=1) has a finite energy eigenvalue even for R =0,
while for /=0 it can be seen that the energy spectrum is not bounded from below
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Fig. 5. The energy E = E(R) for the states o,1s and o, Is for the problem with the potential energy

Vii=—1/ry—1/r, —1/r,r, (For comparison E(R) of HZ for these states is given too)
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at R=0. Fig. 5 shows this behaviour with the help of the calculated energy func-
tion E = E(R).
In the case of the potential energy operator:

1 1 R
Vig=———— - (35)

r T rr;

there are discrete energy eigenvalues for all values of [ and R asindicated in Table 1.
In the limit R =0 the united atom is the same as in H}, since the linear term in
R disappears. On the other hand the limit cases for both problems for R— oo
are quite different. Especially remarkable is the deep minimum in the energy
curve E = E(R) as shown in Fig. 6 for the ground state of the problem with V; p.

—= Rlag)
E 2 5 °

[e’;’o} i +— — T
-0.5 =05
-1.04
204 _A-20

E=E(R)

Ggls VHf’T,-Tz -

Fig. 6. The energy E = E(R) for the states o, 15 and o, 1s for the problem with the potential energy
V, r= —1/r, — 1/r,— R/ry 1, (For comparison the energy for these states of Hj is given too)
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In the region near R=1 the curve E(R) shows a similar behaviour as for V, ,,
but finally tends to a finite value for R —0.

Finally results shall be presented for a special case for which energy eigenvalues
exist for all R. This type of model potential could occur in applications to molecular
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Fig. 7. The energy E = E(R) for the states with n <3 and for 4 fo, for the problem with the potential
energy Vo, = —1/ry —1/r, —0.1/rr,




60 S. Kehl, K. Helfrich, and H. Hartmann:

Table 2. The crossing points for some lower states with the same symmetry of the problem with the potential
energy V(r)= —1/ri — 1/r, — 0.1/r,r, (see Fig.7)

States R[auw] ~E[au] —A
3s 0.013
e 042 0.22890 68103
; '
250, 1.4459
3do, 395 0.29442 71566
3po, 6.3018
ifo, 11.71 0.19447 18.9187

problems. As an example the case with Z, =Z, =1 and @ = 0.1 shall be discussed.
The correlation diagram for the states with principal quantum numbers 1 to 3
and for the state 4 f ¢, (classification according to the united atom case) are shown
in Fig. 7. The energy values E,; can be calculated for R =0 with the formula (10)
of Part I [1]. In the region near R =0 the state 2pg, lies above the state 2sa,.
These two energy curves cross at about R =0.3, and the state 2so, remains then
for the whole region of R above the state 2pa, (see Fig. 7). In the case of an addi-
tional repulsive force 2po, lies below 2sg, for all R.

One should note that there appear also in this case as in other two-centre
problems (cf. e.g. [1]) some crossing points of the energy curves for states with the
same symmetry (see Fig. 7). Some of these are listed in Table 2. It seems to be
remarcable thatin this case also the curves for states of equal main quantum number
3se, and 3do, do cross.

The curve of the one-electron energies for C = 0.1 reminds on that of the system
He—He, for which the united atom Be has a total configuration (1s)*(2s)* (see
e.g. [17]). Therefore for the system He—He the configurations (lsay)2 (2pa,)?
(R large) and (1s0,)* (250,)* (R small) will have to be considered (Fig. 7).

d) The Connection of Generalized Two-Centre Orbitals
with Slater-Zener-Type Orbitals

The Slater-Zener-type orbitals:
Zr

Xo=Nr""te " Y0, ) (36)

are those solutions of the problem (2) which have no zeros in their radial part,
and for which especially:

Qo= —n*(n*—1)2+11+1)/2. G7

These orbitals may be generalized to the two-centre case with equal centres as
those special solutions of the problem:
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Fig. 8. The energy E = E(R) for the problems with a potential, which goes over into a Slater-type
potential for R— 0 for the states with n* £ 3

Table 3. The values of Q for the generalized Slater-Zener-type orbitals, which are plotted

United Value of the
atom-designation  parameter
n*lm 0

1*sa, 0

2*s0, -1

2*pa, Q

2*pr, 0

3*s0, -3

3*pa, -2

3*pm, -2

3*da, 0

3*dm, 0

3*d3, 0
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which have no zeros in their p-part. Vor R— oo (38) goes over into a hydrogenic
problem [1]. Correlation diagrams for some examples of Slater-type problems
are shown in Fig. 8. The values of the parameter Q, for the generalized Slater-Zener-
type functions are given in Table 3 for the plotted energy curves. If @, =0 then
n*=n and the problem is reduced to that of the H; molecule ion.
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